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A novel procedure is developed for the identi"cation of linear discrete models of
dynamical systems from noisy data. Of particular interest is the application of the
methodology to time-varying systems. The procedure is based on a representation of the
governing di!erential equations with respect to a wavelet basis, and the formulation of an
inverse algebraic problem in the associated subspace. The e!ect of noisy data is considered
and numerical simulations demonstrating the applicability of the method to single- and
multi-degree-of-freedom dynamical systems are presented.
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1. INTRODUCTION

Time-invariant (LTI) models are usually appropriate for describing the dynamical behavior
of most structural systems under service loading. Under certain circumstances, however, the
loading conditions are such that either the structure incurs signi"cant damage,
consequently changing its dynamical and mechanical parameters, or the magnitude of the
loads is such that geometrically non-linear behaviour is excited. Moreover, structural
systems accumulate damage under both service load and environmental excitations. In such
cases, a linear time-varying (LTV) model may better capture the transition in the mode of
operation of the system, and could be used to assess the condition of the system or to
diagnose its failure. It is generally recognized that damage can be associated with
a modi"cation of the dynamical characteristics of the system, such as sti!ness and damping
[1]. As far as civil structures are concerned, it has been observed that a degradation of the
sti!ness of up to 70% can occur in either reinforced concrete or steel frames during strong
earthquakes [2,3]. Besides con"rming changes in natural frequencies of the structures
between pre-earthquake and post-earthquake vibration tests, the above studies presented
a detailed study of the response of two buildings adopting a moving window short-time
Fourier transform (STFT) analysis. From this analysis emerged that changes to the
dynamical and structural characteristics can be signi"cantly larger than the reductions
inferred from post-earthquake vibration tests and that these changes are strongly
time-dependent. In order to improve the quasi-time-invariant linear formulation of
the STFT, it was later proposed [4] to model the building structure as a
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single-degree-of-freedom ( s.d.o.f.) time-varying system the parameters of which were
tracked in time through a Kalman Filter utilizing records of ground motion and structural
accelerations. It was found that the ratio of the time-dependent natural frequency to the
original value was a smooth time-varying function, which dropped to about half of its
original value during the strong motion part of the excitation. Having considered that
structures under strong environmental loads may undergo non-linear and time-dependent
degrading behaviour, a real-time-domain technique was later proposed [1] to identify the
time-varying system parameters for a multi-d.o.f degrading system. In this work the system
parameters was assumed to be an arbitrary function of time and a least-squares method was
employed to estimate the system parameters at every time instant based on input data and
the corresponding response measurement. In a di!erent context, time-dependent
parameters were also used to model the dynamics of a semiactive bridge vibration absorber
[5]. This time dependency of the parameter matrices was associated with the dynamic
coupling between the vehicle suspension and the bridge structure. LTV systems have also
been frequently used to model systems that have non-stationary properties.

A number of authors have recently addressed the identi"cation problem by means of the
theory of wavelets. The general trend has been to interpret the wavelet transform (WT) as
a windowing technique characterized by a #exible time-frequency window. The evolution of
the system is deduced from the wavelet transform of the response of the system. For
instance, the fatigue damage of a structure has been modelled as a random impulse in the
input signal [7], and the identi"cation of occurrence time of these impulses have been
investigated by taking the WT of the output signal. Such a detection is shown to be
obtainable for appropriate choices of wavelets belonging to the Daubechies family. The WT
adopting the wavelet of Morlet (a Gaussian-enveloped oscillating function) has been used
[8] to represent the transients generated by faults in a helicopter gearbox. The use of the
continuous wavelet transform has also been applied [9,10] to fault detection in a spur gear.
An application of wavelets in space domain for crack identi"cation in structural elements
has also been presented [11]. In that study, the response of a cracked beam at a given time
was "rst determined using a discrete integration method and then expressed in terms of
a discrete wavelet series; abrupt changes of the coe$cients in that expansion were shown to
give an indication of the crack location. In reference [12] the amplitude of the wavelet
coe$cient of the spatially varying static solution of a one-dimensional (1-D) truss was used
as a reference level for the regularity of the solution itself. The coe$cients of the wavelet
transform from the response of the damaged structure were then compared against this
reference level, with signi"cant discrepancies interpreted as indicative of damage locations.
All the above-mentioned approaches for structural applications are not exempt of a number
of drawbacks. For data with spatial extent, for example, the availability of signals such as
displacements or strains throughout the analyzed structure does not seem to be a realistic
requirement. Similarly, if the analysis refers to temporal data, it is not evident how to derive
meaningful physical interpretations from the detected singularities expressed in terms of
Fourier coe$cients. In spite of such limitations, it is important to point out that the above
investigations, demonstrate a growing attention toward the potential of the wavelet
transform for analyzing non-stationary systems and detecting structural faults. Only for the
case of linear time-invariant systems has the wavelet transform of the impulse response been
e!ectively used to derive the estimation of modal parameters [13]. No other attempts have
been made to develop a framework for parameter estimation using wavelets as the
analyzing signals. The WT has also been used to enhance the quality of the estimates of the
impulse response functions that have traditionally been evaluated using the inverse Fourier
transform [14]. This step plays a key role in many structural identi"cation techniques
where physical modes, mode shapes and damping properties are derived from the



IDENTIFICATION USING WAVELETS 557
estimation of the eigenvalues and the associated eigenvectors. The analysis, however, was
restricted to the estimation of time-invariant models. A wavelet-based identi"cation
procedure for the analysis of linear time-varying systems is presented in this paper. The
study focuses on the identi"cation of the parameters characterizing discrete mechanical
systems modelled by ordinary di!erential equations. Such models are formulated in terms
of lumped mass, damping and sti!ness matrices and the analysis is based on measured time
domain input/output data. The core of the identi"cation algorithm consists of the
estimation of the parameters associated with a di!erential equation model relating input
and the output measurements which has been discretized following a Galerkin procedure
using wavelet based [15,16]. In the next section, the identi"cation technique for s.d.o.f. and
2-d.o.f. systems is presented for both linear time-invariant and linear time-varying systems.
Following that, the performance of the proposed identi"cation procedure in the presence of
noisy data is discussed. Several pertinent numerical simulations are presented in the last
section where systems featuring smooth, abrupt and periodic time variation of their
parameters are studied.

2. IDENTIFICATION TECHNIQUE

The technique proposed in this paper consists of projecting the governing di!erential
equation on a subspace spanned by a "nite number of wavelets. The resulting algebraic
equations are then rewritten with the parameters of the dynamical system as unknowns.
A number of techniques are then presented for estimating the values of these parameters
from input and output noisy data. The next subsection presents the methodology for s.d.o.f.
systems which is then extended, in the following sections, to the analysis to multi-d.o.f.
systems.

2.1. SINGLE-DEGREE-OF-FREEDOM SYSTEMS

In this subsection the Galerkin approach is used to discretize the ordinary di!erential
equation of a s.d.o.f. subjected to a general excitation f (t). The governing equation of motion
is given by

m (t)xK (t)#c (t)xR (t)#k (t)x (t)"f (t). (1)

The parameters m(t) , c(t) and k (t) refer, respectively, to the time-varying mass, damping and
sti!ness of the system. The problem is next recast in the subspace spanned by the basis
de"ned by the compactly supported Daubechies scaling functions given by
u
j,k

(t)"2j@2u(2jt!k) [17], where j is a scale parameter and k is a location parameter. Two
di!erent scaling functions, shown in Figure 1, are adopted in this work corresponding to
values of N"3 and 4, where N denotes the number of vanishing moments for that
particular class of wavelets. The corresponding expansions for the response x(t) and the
excitation f (t) are given by

x (t)"
J
+
k/I

aN
k
2j@2u(2jt!k) (2)

and

f (t)"
J
+ bM

k
2j@2u(2jt!k) (3)
k/I



Figure 1. Daubechies scaling function with (a) N"3 and (b) N"4.
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respectively. The lower and upper bounds I and J on the summations depend on the
support of the speci"c Daubechies' scaling functions selected for the particular problem. If
N is the number of vanishing moments, then the support of u

j,k
(t)"2j@2u(2jt!k) is

[2~jk, 2~j(k#2N!1)], so that I"k
0
!¸#2 and J"k

1
!1, where ¸"2N, k

0
"2 jt

0
and k

1
"2jt

f
are integer values and t

0
and t

f
denote respectively, the initial and "nal time.

The time derivatives of x (t) can be expressed in terms of the corresponding time derivatives
of the wavelet functions, resulting in the expressions

xR (t)"2j
J
+
k/I

aN
k
2j@2uR (2jt!k) , xK (t)"22j

J
+
k/I

aN
j,k

2j@2uK (2jt!k) . (4)

Substituting a
j,k
"a6

k
2j@2 , b

j,k
"bM

k
2j@2 and y"2jt, and setting t

0
"0, t

f
"1, the equation

of motion can be rewritten as

m(y/2j )22j
2j~1
+

k/2~L

a
j,k

uK (y!k)#c(y/2j )2j
2j~1
+

k/2~L

a
j,k

uR (y!k)

#k (y/2j )
2j~1
+

k/2~L

a
j,k

u (y!k)"
2j~1
+

k/2~L

b
j,k

u (y!k) . (5)

Taking the inner product of both sides of equation (5) with u(y!l ), making the
substitution y!l"z, and using the orthogonality of the translates of the scaling functions,
results in the equation

m
l

2j~1
+

k/2~L

a
j,k

C (2)
k~l

#c
l

2j~1
+

k/2~L

a
j,k

C (1)
k~l

#k
l
a
j,l
"b

j,l
, for l"2!¸ ,2, 2j!1,

(6)
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where

C (n)
k
"P

`=

~=

u(n)(y!k)u (y) dy . (7)

The terms C (n)
k

in the latter expression denotes the so-called 2-term connection coe$cients
while un is the nth derivative of the scaling function u with respect to its argument.
Analytical expressions for these coe$cients, that can be computationally evaluated, have
already been derived in the literature [18]. If the integral in equation (7) is evaluated over
a "nite domain, these coe$cients can still be evaluated analytically [19] and they are
referred to as the proper connection coe$cients. The support of u(t) is the interval
[0, ¸!1] and it does not overlap with that of u(n)(t!k) for Dk D*¸!1; therefore we have
the following properties for the connection coe$cients:

C (n)
k

(x)"0 for x)0 or x)k and Dk D*¸!1 , (8)

C (n)
k

(x)"C (n)
k

(¸!1) for x*¸!1. (9)

Since k, l"2!¸,2, 2 j~1, it follows that the only non-zero C (n)
k

(x) with xO¸!1 are
those corresponding, in equation (6), to l"2!¸, 3!¸,2, !1 and for
l"2j!¸#2, 2j!¸#3,2, 2j!1. In compact matrix notation equation (6) reduces
simply to

Ca"b , (10)

where C is a square matrix of dimension 2j#¸!2 in which are embedded all the
properties of the system. If the solution to the initial-value problem is of interest, equation
(10) can be solved for a and the solution is then reconstructed as x (y/2j)"+

k
a
j,k

u(y!k)
[20]. If the interest lies in solving the inverse problem, the set of algebraic equations in terms
of the scaling function coe$cients of the input and the output of equation (10) can be
rearranged and solved for the unknown damping and sti!ness parameters by means of the
equation

C1 h"b1 . (11)

Assuming the mass to be known, the vector h"[c k]T contains the unknown parameters
and a generic lth row of the (2j#¸!3)]2 matrix C1 reads

C1
l
"C2j+

k

a
j,k

C (1)
k~1

a
lD . (12)

The corresponding lth term of the vector b1 is given by

bM
l
"b

l
!22jm

l
+
k

a
j,k

C (2)
k~l

. (13)

Equation (11) has two unknowns, and as many equations as the number of scaling functions
used in discretizing the governing di!erential equation. For a linear time-invariant system



TABLE 1

S.d.o.f. ¸¹I system: in-uence of the level of resolution on the estimate accuracy; resolution
level, j"9

Resolution j"7 j"8 j"9

hK cL kK cL kK cL kK

kh) 1)26 39)02 1)26 39)00 1)26 39)00
COVKh 1)35E-2 1)54E-3 2)71E-4 2)77E-5 4)7E-5 8)14E-6

560 R. GHANEM AND F. ROMEO
(LTI) any two equations of the set (11) provide an estimate of the unknown parameters
c and k. In general, however, for time-varying (LTV) systems, and due to the local nature of
the scaling functions with support s"¸!1, the generic lth equation of the set (11) gives
information about the system during the time interval t

l~s~1
, t

l`s~1
, where t

i
"iDt, Dt

being the analysis time step. Thus, the evolution of the parameters over the whole duration
of the analysis can be estimated by means of the above algorithm. This localization feature
is peculiar to the choice of scaling functions to describe the signals, and is not shared by
arbitrary basis functions. Indeed, the wavelet-based discretization is such that each
equation from the set (11) corresponds to a time lag equal to (s!1)2Dt . As previously
mentioned, the support s is related to the resolution level by [2~jk, 2~j (k#2N!1)], where
k is the translation parameter and N characterizes the chosen Daubechies scaling function,
and it diminishes in length as the resolution j increases. The lth entry in the vector h refers to
the value taken by only one of the two unknown parameters over the corresponding lth
time lag. Therefore, the only approximation introduced by solving for sequential pairs of
equations is that the estimated parameters are assumed to be constant over time lags whose
duration is given by (s!2)2Dt corresponding to two consecutive time steps. The system of
equations given by equation (11) can also be solved by adopting a minimization technique,
such as least squares, over groups of sequential equations. This is particularly important in
the presence of noise or in the case where the underlying governing equation is known to be
time varying or non-linear. In this case, the choice of the number of sequential equations
over which to perform the least-squares minimization must be chosen with care, as it
controls the sensitivity of the estimated parameters with respect to local features in the
signal. These could be associated either with noise, or with abrupt changes in the
parameters of the system. The analysis presented in this paper has been carried out
adopting the Daubechies scaling functions with N"3 and 4. The number of non-zero
coe$cients h

n
involved in their construction are ¸"2N. Table 1 shows the accuracy of the

parameter estimate hK for a LTI system. Values for the average, kh) , over all times steps and
the corresponding coe$cient of variation (COVh)"ph) /kh) , for khKO0, where p represents the
standard deviation) are shown in the table. The latter non-dimensional quantity is chosen as
a measure of the dispersion of the estimates. The numerical values of the parameters of the
system we are studying are m"1)0, c"1)26 and k"39)0. The excitation is given by
f (t)"A sin(u

1
t)#A sin(u

2
t), where A"10, u

1
"6)91 rad/s and u

2
"5)65 rad/s.

2.2. MULTI-DEGREE-OF-FREEDOM SYSTEMS

The direct identi"cation technique discussed in the previous section can be extended to
multi-d.o.f. linear time-varying systems. Letting n be the number of d.o.f.s, the



Figure 2. Schematic model of a 2-d.o.f. time-varying system.
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Wavelet}Galerkin scheme is now applied to the resulting set of n coupled di!erential
equations governing the problem, which are written as

M(t)xK#C(t)x5 #K(t)x"f , (14)

where the elements of the n]n matrices M(t), C(t) and K(t) represent time-varying physical
masses, dashpots and springs. The n]1 matrices xK , x5 and x are respectively time-varying
acceleration, velocity and displacement responses, and the n]1 matrix f represents the
generic time-varying external excitations.

In order to describe the extension of the procedure, a 2-d.o.f.s. system is considered and
a sketch is shown in Figure 2. The various terms in equation (14) are given by

M"C
m

1
(t) 0

0 m
2
(t)D , C"C

c
1
(t)#c

2
(t) !c

2
(t)

!c
2
(t) c

2
(t) D ,

K"C
k
1
(t)#k

2
(t) !k

2
(t)

!k
2
(t) k

2
(t) D , f"C

f
1
f
2
D . (15)

The extension of equation (5) to the 2-d.o.f. case is obtained by expanding responses and
forces time-histories in the wavelet bases adopting the same substitutions. Then, taking the
inner product of both sides of the resulting equation with u(y!l ), leads to the equations

m
1,l

J
+
I

C (2)
k~l

a
1,j,k

#(c
1,l

#c
2,l

)
J
+
I

C (1)
k~l

a
1,j,k

#(k
1,l

#k
2,l

)a
1,j,l

!c
2,l

J
+
I

C (1)
k~l

a
2,j,k

!k
2,l

a
2,j,l

"b
1,j,l

,

m
2,l

J
+
I

C (2)
k~l

a
2,j,k

#c
2,l

J
+
I

C (1)
k~l

a
2,j,k

#k
2,l

a
2,j,l

!c
2,l

J
+C (1)

k~l
a
1,j,k

!k
2,l

a
1,j,l

"b
2,j,l

(16)

I
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The latter equations can be expressed in matrix notation in a similar form to equation (11)
by introducing a system matrix C1 which, in general, has dimension n2j]pn, when n is the
number of d.o.f. and p is the number of unknown parameters per d.o.f. Assuming both
masses to be known, the generic lth couple of rows to be solved for the estimate of damping
and sti!ness parameters is given by

J
+
I

C (1)
k~l

a
1,j,k

a
1,j,l

J
+
I

C (1)
k~l

(a
1,j,k

!a
2,j,k

) a
1,j,l

!a
2,j,l

0 0
J
+
I

C (1)
k~l

(a
2,j,k

!a
1,j,k

) a
2,j,l

!a
1,j,l

c
1,l

k
1,t

c
2,l

k
2,l

"

b
1,j,l

!m
1

J
+
I

C (2)
k~l

a
1,j,k

b
2,j,l

!m
2

J
+
I

C (2)
k~l

a
2,j,k

. (17)

The resulting set of algebraic equations can be solved either by considering sequential
groups of 2n equations or by minimizing an associated measure of the error. The
approximation introduced in the estimation procedure is the same as that discussed for the
s.d.o.f. case. It must be emphasized that the direct identi"cation scheme described above
does not require the uncoupling of the governing set of equations in order to estimate the
unknown parameters. It is emphasized that the procedure is consistent with the assumption
that the parameters are constant over a time interval strictly linked to the support of the
scaling functions and which diminishes in length as the resolution j increases. It will be
shown that the above-mentioned assumption is not restrictive; indeed in the following
sections the identi"cation procedure will be applied to systems featuring di!erent idealized
evolutions of their mechanical parameters. The latter consideration constitutes the main
di!erence with respect to STFT methods where the changes in the frequency content of
a signal have to be slow relative to the smallest frequency resolved by the Fourier transform,
i.e., 2n/¹, where ¹ is the length of the time window. Moreover, it is well known that in order
to assure a meaningful Fourier analysis such length cannot be taken too small therefore
enforcing restrictive assumptions on the nature of the parameter variations. The e!ect of the
level of resolution on the accuracy of the parameter estimates has been evaluated for
a 2.d.o.f. LTI system; the results are shown in Table 2. The system is excited at both
co-ordinates by the same sinusoidal force used for the s.d.o.f. case; the numerical values of
the parameters are m

1
"1)0 and m

2
"2)0, c

1
"1)26 and c

2
"1)1, k

1
"39)0 and k

2
"35)0.

3. ROBUSTNESS OF THE PROCEDURE WITH RESPECT TO NOISY DATA

This section deals with the identi"cation of the parameters of dynamical system terms
based on noise-corrupted input/output data. In order to tackle the problem, the wavelet
transform (WT) is employed at two stages. Initially, the data are pre-processed by means of
the WT, then the same transform is applied to the functionals involved in the identi"cation
algorithm. The spatial localization of the wavelets turns out to be also convenient in
processing the data in order to "lter out the noise. In fact, the wavelet bases allow the



TABLE 2

2-d.o.f ¸¹I system: in-uence of the level of resolution on the estimate accuracy; resolution
level, j"9

Resolution j"7 j"8 j"9

kh) COVh) kh) COVh) kh) COVh)

cL
1

1)257 0)548 1)26 0)012 1)26 4)4E-4
kK
1

38)99 0)051 39)0 2)0E-3 39)0 9)3E-5
cL
2

1)10 0)40 1)10 5)25E-3 1)10 9)0E-5
kK
2

35)03 0)26 35)0 3)6E-3 35)0 5)59E-5
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detection of the occurrence time of a signi"cant change in the analyzed function by looking
at the values of its wavelet coe$cients at level j"j

0
,2, J at spatial indices k with k2~j+t.

It is important to determine whether such a change is associated with an actual physical
event or it is merely induced by noise. The denoising task can then be interpreted as that of
extracting and modifying in a suitable way those coe$cients associated with changes in the
signal that are also consistent with the speci"c de"nition of noise given by the thresholding
algorithm. Di!erent methods for identifying and either modifying or removing these
coe$cients have been developed recently in the signal processing community [21}23]. The
approach that is considered in this section consists of building an adaptive algorithm based
on the principle of selective wavelet reconstruction [21]. Thus, expressing the wavelet
transform of the data y"(y

i
)2j

i/1
as

y"+
j,k

w
j,k
=

jk
, (18)

where w
j,k

are the wavelet coe$cients, a "nite list d of ( j, k) pairs is introduced, along with
a projection operator, ¹ (. ,d), de"ned as

¹(y, d)" +
( j,k)|d

w
j,k
=

jk
. (19)

The operator ¹ (. ,d) provides an approximation of the data y by selecting only a subset of
the wavelet coe$cients. Given the contaminated data,

y
i
"x (t

i
)#e

i
, i"1,2, 2j , (20)

where e
i
are independently distributed zero-mean Gaussian random variables with standard

deviation p, and x( ) ) is the target function. It follows that the orthogonal transform z"=e
of e

i
is also a white noise and the wavelet coe$cients are given by

w
j,k
"h

j,k
#z

j,k
, (21)

where h"=x. From the previous consideration it follows that while every wavelet
coe$cient contributes noise, only few of them contribute to the signal. In order to select the
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latter coe$cients, a number of thresholding rules have been proposed according to di!erent
criteria. In our simulations, the best performance has been obtained with the following
simple thresholding [21],

g(w, j)"wIMDwD'jN, (22)

where IM)N denotes a set function, equal to 1 if its argument is true, and 0 if it is false, and j is
some threshold level. This thresholding logic leads to an estimator hK

j,k
of the wavelet

coe$cients h
j,k

in equation (21) given by

hK
j,k
"w

j,k
IMDw

j,k
D'j

n
pN, (23)

where j
n
"(2 log n)1@2. The noise level p is taken as the standard deviation of the coe$cients

at the "nest scale J based on the assumption that these coe$cients are mainly associated
with pure noise, and n denotes the number of coe$cients at that scale. The selective wavelet
reconstruction ¹(y, d) of equation (19) can now be expressed as

¹"=T
3
E
3
=, (24)

where E denotes the diagonal linear projection of equation (22). Therefore, equation (24)
gives the approximation yL of the data y by applying the wavelet transform, followed by
diagonal linear projection, followed by the inverse wavelet transform. The above criterion
has also been compared to a simpler one where the estimator of equation (23) has been
replaced by

hK
j,k
"G

w
j,k

if j(jM ,
0 if j*jM ,

(25)

meaning that all the wavelet coe$cients beyond a selected scale jM , which is related to the
analyzed function, are set to zero.

Figure 3 shows the resulting "ltered signal obtained by applying both of the above
wavelet reconstruction strategies to noisy data. Referring to the general case of an
n-dimensional measurement vector y, such noisy data are obtained by adding a Gaussian
white noise e assumed proportional to the measurement vector

e"Sy, (26)

where S is an n]n diagonal random matrix whose diagonal components s
1

,2, s
n

are
independent and identically distributed with zero means and standard deviations p. The
latter quantity represents the noise-to-signal ratio of the measurements at each time instant
iDt

I
, where Dt

I
is the identi"cation interval. In order to measure the e!ect of the selective

wavelet reconstruction described above on the accuracy of the parameters estimates, the
following quantities are introduced:

err
i
(k)"

k
i,true

!kK
i

k
i,true

]100 err
i
(c)"

c
i,true

!cL
i

c
i,true

]100, (27)

measuring the error at the ith time step between estimated and actual model parameters.
The introduction of the thresholding of the wavelet coe$cients of the signals has to be taken



Figure 3. Denoised signal according to di!erent denoising strategies with p"10%: (a) corresponds to equation
(23); (b) corresponds to equation (25).
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into account when performing the least-squares estimate of the unknown parameters.
Indeed, by removing the wavelet coe$cients associated with the higher scales, a correlation
in the initially uncorrelated e

i
is introduced. Thus, the initial diagonal covariance matrix pI

of e
i
, where I is the identity matrix of order 2j, becomes a new matrix Q of the same order

with, in general, non-zero o!-diagonal terms. Such a matrix has to be evaluated and
considered through the so-called weighted least-squares scheme. Considering the
continuous form of the scaling function expansion of the measured response y (t), the kth
scaling function coe$cient is given by

aN
k
"P

T

0

y (t)u
k
(t) dt"P

T

0

x (t)u
k
(t) dt#P

T

0

e(t)u
k
(t) dt, (28)

with u
k
(t)"2j@2u (2jt!k), where the scale index j is omitted. Letting lDt represent the time

lag equal to the scaling function support l"¸!1, equation (28) may be rewritten as
a8
k
"a

k
#f

k
with

a
k
"P

tk`lDt

tk

x (t)u
k
(t) dt, f

k
"P

tk`lDt

tk

e(t)u
k
(t) dt, (29)
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where the term f
k
is a random scaling function coe$cient. Multiplying the latter coe$cient

by f
k`1

and taking expectations E[)], results in

E[f
k
f
k`1

]"PP
tk`1`lDt

tk

E[e (t)e (q)]u
k
(t)u

k`1
(q) dtdq . (30)

If the measurement noise is assumed to consist of a sequence of uncorrelated
random variables, then the orthogonality of the scaling functions results in E[f

k
f
i
]"p2d

k,i
,

which yields a diagonal covariance matrix and implies that the least-squares estimates h) ,
obtained by minimizing with respect to h the quantity Eb1 !C1 hE2, are unbiased estimates of
h. Alternatively, if a selective wavelet reconstruction is performed, as indicated by
equation (23) and (25), the original purely random process representing the measurement
noise becomes a band-limited white noise whose autocovariance function assumes the
form

E[e(t
k
)e (t

i
)]"p2

sin[2nB(t
k
!t

i
)]

2nB(t
k
!t

i
)

. (31)

The latter expression modi"es equation (30) which becomes

E[f
k
f
k`1

]"p2PP
tk`(l~1)Dt

tk

sin[2nB (t
k
!t

i
)]

2nB(t
k
!t

i
)

u
k
(t)u

k`1
(q) dt dq, (32)

where B represents the bandwidth and is given by B"1/(2Dt
I
2J~jM ). Based on equation (32),

the sparse noise covariance matrix Q is obtained as Q"E(ffT), where f"Mf
1
,2, f

2j
NT.

Consequently, Q being invertible, the resulting weighted least-squares scheme consists of
minimizing the quadratic form

<(h)"(b1 !C1 h)TQ~1(b1 !C1 h) , (33)

leading to the generalized normal equations

(C1 TC1 ) h)"C1 TQ~1b1 . (34)

In order to extend the noise statistical characterization, further analyses, aimed at
clarifying the role of the noise on the proposed identi"cation algorithm, have been
conducted. Towards this goal, the e!ect of the wavelet-based linear transformation on the
perturbed signals will be brie#y discussed. In view of its simplicity, the s.d.o.f case will be
used to extend the analysis from the previous section to treat noisy data. The generic lth row
of the matrix C1 in the algebraic problem given by equation (11) becomes

CM
l
"C2jA+

k

C (1)
k~l

a
k
#+

k

C (1)
k~l

f
kB a

1
#f

lD , (35)

where the coe$cients f
l

and a
l

are as de"ned in equation (29). The lth term on the
right-hand side of equation (11) becomes

bI
l
"bM

l
!22jm+

k

C (2)
k~l

f
j,k

(36)

Where bM
1

is given by equation 13.
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Thus, in order to account for noisy data, equation (11) is modi"ed according to

Ch#C3 h"b3 , (37)

where the two operators C and C3 refer respectively, to the unperturbed quantity and its
random perturbation. The mean vector and covariance matrix of b3 are given respectively by

E[b3 ]"E[Ch#C3 h]"E[Ch]#E[C3 h]"Ch (38)

and

E[(b3 !E[b3 ])(b3 !E[b3 ])T]"E[(C3 h) (C3 h)T]"E[C3 hhTC3 T]. (39)

The covariance of b3 depends therefore in a non-linear fashion on the parameters, a fact that
considerably complicates the computational task of optimization. Equation (39) can be
rewritten using the trace operator as

E[C3 hhTC3 T]"Tr(hhT)E[C3 TC3 ]. (40)

Therefore, equation (37) can be rewritten in the more convenient form

b"Ch#e , (41)

where e represents a random vector with E[e]"0 and covariance Re"R(h) given by
equation (40), so that b"N(Ch, R(h)) and the joint probability density function of the
random vector b, whose dimension is N"2j, is given by

P(b)"
1

(2n)N@2(detR(h))1@2
exp G!

1

2
[(b!Ch)TR(h)~1(b!Ch)]H . (42)

Although the considerations developed so far lead to conclude that the estimate of the
parameters vector h could still be carried out through a least-squares scheme, the non-linear
dependence of the covariance matrix R(h) on the parameter vector h in equation (42)
involves considerable di$culties. In order to overcome such di$culties, a di!erent
approach can be followed that involves analyzing the e!ect of the operator C3 on the
identi"cation algorithm. The scaling coe$cients a

k
in equation (35) are those obtained from

the selective wavelet reconstruction; however, the e!ect of the operator C3 , arising from the
presence of noise, is to amplify the wavelet coe$cients of the whole term C#C3 at the "nest
scales. In other words, even if the denoised signal contains apparently negligible noise
contributions, the identi"cation of the parameters can still be poor because the
high-frequency content of C is signi"cantly ampli"ed by the perturbation introduced by
C3 which features the time derivatives of the noise component.

Figure 4 shows the e!ect of noise on the "nest scale wavelet coe$cients of the terms

c (1)"+C (1)
k~l

(a
k
#f

k
) (43)
k



Figure 4. Ampli"cation of higher scales wavelet coe$cients through time-di!erentiation of the signal: (a)
wavelet coe$cients of signal; (b) wavelet coe$cients of "rst derivative (equation (43)); (c) wavelet coe$cients of
second derivative (equation (44)). Left column: noiseless data; right column: noisy data, p"10%.
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and

c (2)"+
k

C (2)
k~l

(a
k
#f

k
) , (44)

appearing in expressions (35, 36). The resolution is J"9 and the abscissa index refers to the
wavelet coe$cients position across the scales; thus, going from right to left, the last
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2J~1"256 points correspond to the coe$cients at scale 8, the following 2j~2"128 points
correspond to the coe$cients at scale 7 and so on. In order to mitigate the e!ect of
amplifying the noise through di!erentiation, the thresholding strategy has been extended to
the terms c (1) and c (2). Thus, in addition to thresholding the input/output data, the terms
c (1) and c (2) are also subjected to a similar thresholding.

4. NUMERICAL INVESTIGATIONS

The numerical investigations that are shown in this section refer to stable systems
characterized by time-dependent behavior of their mechanical parameters. Three ideal cases
of time variation are studied, namely slow, abrupt and periodic variations. The
identi"cation is carried out for each of the systems under both free and forced oscillations
taking into account noise-corrupted data. The response of the systems used to perform the
identi"cation is obtained from numerical solutions of the governing di!erential equations
using a "fth order Runge}Kutta}Verner method. For the ideal cases without noise, the
estimates of the parameters were obtained by solving, sequentially, pairs of equations. In
presence of noise the estimates were obtained by a least-squares solution of subsets of the
governing equations, thus yielding estimates of the average behavior of the parameters over
a time window covered by that particular subset. The number of equations entering such
subsets will be speci"ed for each case analyzed.

4.1. SMOOTHLY VARYING PARAMETERS

The "rst analysis is addressed to the identi"cation of the mechanical properties of an ideal
model that could be interpreted as a representation of a degrading structure. The simulation
is based on quadratic variations in time of both sti!ness and damping. The former is
assumed to be decaying while the latter is increasing. As already pointed out, the value of
the parameter in time is estimated either by taking sequential pairs of equations or by
taking the least-squares solution over sequential subsets of equations. The sampling rate of
the analysis is Dt"0)04 s and the level of resolution is j"9. The sti!ness and damping
variations for the s.d.o.f. case are given by

c(t)"c
0
#at2, k (t)"k

0
#bt2 ,

where c
0
"1)26, k

0
"39)0, a"0)001 and b"!0)01. The excitation is given by

f (t)"A sin(u
1
t)#A sin(u

2
t), where A"1)0, u

1
"6)91 rad/s and u

2
"5)65 rad/s. The

initial conditions for the free vibration case are x
0
"0)1 and xR

0
"0)0

The results for the s.d.o.f are shown in Table 3. A 2-d.o.f system is also considered, with
the same excitation acting on each of its d.o.f as that in the previous case; the initial
conditions for the free vibrations analysis are x

1,0
"0)0, xR

1,0
"0)0, x

2,0
"0)1, xR

2,0
"0)0.

The quadratic laws governing the time variations of the parameters are the same as the
previous case with the initial values of the parameters given as c

1,0
"1)26, k

1,0
"39)0,

c
2,0

"1)1, k
2,0

"35)0. The results for the 2-d.o.f. are shown in Table 4.
The results with noisy data refer to estimates obtained through least-squares solutions

over sequential subsets of 64 equations. The least-squares solutions have proven to improve
the tracking of the parameters in the presence of noisy data. Figures 5 and 6 show the
tracking of the parameters for respectively, the s.d.o.f and 2-d.o.f. systems both excited by
the previously de"ned harmonic force. The results show that the procedure allows for rather



TABLE 3

¸¹< s.d.o.f.: monotonically varying parameters; estimate accuracy expressed as
r.m.s. (err())) for increasing level of noise p; resolution level, j"9

Forced oscillations Free oscillations

p err(c) err(k) err(c) err(k)

0 0)324 0)053 0)374 0)045
5% 8)72 2)44 6)39 2)18

10% 12)77 3)95 11)75 3)52

TABLE 4

¸¹< 2-d.o.f.: monotonically varying parameters; estimate accuracy expressed as r.m.s. (err()))
for increasing level of noise p; resolution level, j"9

Forced oscillations Free oscillations

p err(c
1
) err(k

1
) err(c

2
) err(k

2
) err(c

1
) err(k

1
) err(c

2
) err(k

2
)

0 0)33 0)047 0)33 0)05 0)76 0)068 0)85 0)077
5% 8)72 2)59 5)57 1)51 7)26 1)33 8)91 2)37

10% 18)66 4)5 14)72 2)74 23)53 3)23 30)45 4)95

Figure 5. LTV s.d.o.f. system: slowly varying (a) damping and (b) sti!ness estimates;*, true; )))), 5%; - - - , 10%;
}} }, no noise.
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robust sti!ness estimates whose error root mean square (r.m.s) value is always lower than
5% for both the s.d.o.f and 2-d.o.f cases. The damping estimates are less robust to noise
levels, showing an error r.m.s. value ranging from 10% for the s.d.o.f case to a maximum
value of 30% for the 2-d.o.f. case. Forced and free vibration cases provide similar estimation



Figure 6. LTV 2-d.o.f. system: slowly varying damping (left column) and sti!ness (right column) estimates: (a)
"rst element (b) second element. **, true; ) ) ) ) , 5%; - - - , 10%; } } }, no noise.
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accuracy with the exception of the damping estimates which are more accurate under forced
vibration.

4.2. PERIODICALLY VARYING PARAMETERS

The second set of numerical investigations concerns a system characterized by
a parametrically varying sti!ness. The time step is Dt"0)046 s and the resolution level is
j"9. The s.d.o.f. case considered is governed by the damped Mathieu equation,

mxK (t)#cxR (t)#(k
0
!q cos Xt)x (t)"f (t) ,

where c"1)26, k
0
"39)0; q"5)0 is the parameter measuring the strength of the

parameteric excitation whose frequency is X"0)4 and f (t) is the same as the previous
example. The initial conditions for the free vibrations are x (0)"0)1, xR (0)"0)0. Setting
k(t)"k

0
!q cosXt, the estimate of the evolution of the periodic parameter k (t) is given in

Figure 7. The estimate accuracy is evaluated through the r.m.s. value of the errors de"ned in
equation (40) and the numerical values are given in Table 5.

For the 2-d.o.f. system considered next, the excitation acting on each d.o.f. is the same as
the previous s.d.o.f. case; the initial conditions for the free vibrations analysis are x

1,0
"0)0,



Figure 7. LTV s.d.o.f. system: periodically varying sti!ness estimates. **, true; ) ) ) ) , 5%; - - - , 10%; } } }, no
noise.

TABLE 5

¸¹< s.d.o.f.: Periodically varying parameters; estimate accuracy expressed as
r.m.s. (err())) for increasing level of noise p; resolution level, j"9

Forced oscillations Free oscillations

p err(c) err(k) err(c) err(k)

0 2)17 0)38 1)68 0)33
5% 15)02 3)07 17)64 3)35

10% 16)04 5)22 20)72 4)88
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xR
1,0

"0)0, x
2,0

"0)1, xR
2,0

"0)0. The time-periodic parameters are speci"ed as
k
1
(t)"k

1,0
!q sinXt, k

2
(t)"k

2,0
!q cosXt with k

1,0
"39)0, k

2,0
"35)0, q"5)0 and

X"0)4. The damping coe$cients are constant for both d.o.f.s. and their values are
c
1
"1)26, c

2
"1)1. The results are given in Table 6.

In the presence of noise, the estimates for both systems have been obtained through
least-squares solutions over sequential subsets of 48 equations. The results obtained for the
periodic parameter variation cases are consistent with the quadratic variation cases shown
in the previous example. The estimates evolution for increasing level of noise is presented in
Figure 8.



TABLE 6

¸¹< 2-d.o.f.: periodically varying parameters; estimate accuracy expressed as r.m.s. (err())) for
increasing level of noise p; resolution level, j"9

Forced oscillations Free oscillations

p err(c
1
) err(k

1
) err(c

2
) err(k

2
) err(c

1
) err(k

1
) err(c

2
) err(k

2
)

0 2)0 0)24 2)21 0)27 4)55 0)33 5)8 0)41
5% 12)57 2)82 10)75 2)83 17)22 2)5 22)5 3)52

10% 20)13 4)77 18)29 3)14 37)96 3)91 48)23 5)74

Figure 8. LTV 2-d.o.f. system: periodically varying sti!ness estimates; (a) "rst element; (b) second element.**,
true; ) ) ) ) , 5%; - - - , 10%; } } }, no noise.
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4.3. ABRUPT STIFFNESS VARIATIONS

The case considered in this subsection consists of an idealized model of damage
characterized by an abrupt change in the sti!ness. Its purpose is to assess the suitability of
the identi"cation procedure to abrupt variations in the parameters. The choice of the
number of equations included in the least-squares solution is crucial in order to detect both
the amplitude and the time of ocurrence of the variation of sti!ness. The larger the number
of equations used in the least-squares procedure, the smaller the sensitivity of the procedure
to short-time variations in the system, while the smaller the number of equations, the less
discerning the procedure is between noise and signal. The time step used in this example is
Dt"0)06 s and the resolution level is j"9. The abrupt sti!ness changes for the s.d.o.f.
simulations are given by k (t)"k

0
for t(¹/4, k (t)"0)75 k

0
for ¹/4)t(3/8 ¹,

k(t)"0)9 k
0
for 3/8 ¹)t(4.5/8¹, k (t)"0)75 k

0
for 4)5/8 ¹)t(5/8 ¹ and k(t)"0)9 k

0
for t*5/8 ¹. The values of the parameters are k

0
"39)0 and c"1)0.

As far the 2-d.o.f system, the same abrupt sti!ness changes have been assumed for both
d.o.f.s. Namely, k(t)"k

0
for t(¹/4, k(t)"0)75 k

0
for ¹/4)t(¹/2, k(t)"0)9 k

0
t*¹/2.

The values of the parameters are k
1,0

"39)0, k
2,0

"35)0 and c
1
"1)26, c

2
"1)1.

Least-squares solutions over sequential subsets of 32 equations have provided the
estimates shown in Figures 9 and 10.



Figure 9. LTV s.d.o.f. system: abrupt varying sti!ness estimates; **, no noise; ) ) ) ) , 5%; - - -, 10%; } } } , true.

Figure 10. LTV 2-d.o.f. system: abrupt varying sti!ness estimates; (a) "rst element, (b) second element.**, no
noise; ) ) ) ) , 5%; - - -, 10%; } }} , true.
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5. CONCLUSIONS

In this paper the wavelet framework has been adopted to describe the evolution of
dynamical systems. The Wavelet}Galerkin approach is used to discretize the governing
equations. From measurements of input and output data, estimate of the parameters of the
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governing di!erential equation are then obtained. S.d.o.f. and 2-d.o.f. systems undergoing
forced and free vibrations have been studied. The damping and sti!ness parameters of
a linear time-invariant system have been accurately estimated. Moreover, the same
identi"cation procedure has been shown to be e!ective in tracking idealized time evolutions
of the unknown parameters. The number of equations entering the least-squares estimates
arising from the associated algebraic problem can be interpreted as a design parameter that
enables the "ne tuning of the algorithm to the particular problem at hand. The analysis and
performance of the technique under the realistic conditions of noisy data has also been
presented. It has been shown that the presence of noise can a!ect the accuracy of the
predicted evolution of damping estimates while rather robust estimates of the sti!ness
parameters can be obtained.
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